decoding$19323$ - definizione. Che cos'è decoding$19323$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è decoding$19323$ - definizione

List-decoding

Encoding/decoding model of communication         
CULTURAL STUDIES MODEL
Hall's Theory; Encoding/Decoding model of communication; Hall's Theory of encoding and decoding; Encoding/Decoding Model of Communication
The Encoding/decoding model of communication was first developed by cultural studies scholar Stuart Hall in 1973. Titled 'Encoding and Decoding in the Television Discourse', Hall's essay offers a theoretical approach of how media messages are produced, disseminated, and interpreted.
Decoding         
WIKIMEDIA DISAMBIGUATION PAGE
Decode; Decoding (disambiguation)
Decoding or decode may refer to: is the process of converting code into plain text or any format that is useful for subsequent processes.
Decoding methods         
ALGORITHMS TO DECODE MESSAGES
Mimimum distance decoding; Maximum likelihood decoding; Ideal observer decoding; Syndrome decoding; Minimum distance decoding; Nearest neighbour decoding; Nearest neighbor decoding; ML decoding; Syndrome bit; Minimum distance coding; Minimum distance code; Error syndrome
In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords.

Wikipedia

List decoding

In coding theory, list decoding is an alternative to unique decoding of error-correcting codes for large error rates. The notion was proposed by Elias in the 1950s. The main idea behind list decoding is that the decoding algorithm instead of outputting a single possible message outputs a list of possibilities one of which is correct. This allows for handling a greater number of errors than that allowed by unique decoding.

The unique decoding model in coding theory, which is constrained to output a single valid codeword from the received word could not tolerate a greater fraction of errors. This resulted in a gap between the error-correction performance for stochastic noise models (proposed by Shannon) and the adversarial noise model (considered by Richard Hamming). Since the mid 90s, significant algorithmic progress by the coding theory community has bridged this gap. Much of this progress is based on a relaxed error-correction model called list decoding, wherein the decoder outputs a list of codewords for worst-case pathological error patterns where the actual transmitted codeword is included in the output list. In case of typical error patterns though, the decoder outputs a unique single codeword, given a received word, which is almost always the case (However, this is not known to be true for all codes). The improvement here is significant in that the error-correction performance doubles. This is because now the decoder is not confined by the half-the-minimum distance barrier. This model is very appealing because having a list of codewords is certainly better than just giving up. The notion of list-decoding has many interesting applications in complexity theory.

The way the channel noise is modeled plays a crucial role in that it governs the rate at which reliable communication is possible. There are two main schools of thought in modeling the channel behavior:

  • Probabilistic noise model studied by Shannon in which the channel noise is modeled precisely in the sense that the probabilistic behavior of the channel is well known and the probability of occurrence of too many or too few errors is low
  • Worst-case or adversarial noise model considered by Hamming in which the channel acts as an adversary that arbitrarily corrupts the codeword subject to a bound on the total number of errors.

The highlight of list-decoding is that even under adversarial noise conditions, it is possible to achieve the information-theoretic optimal trade-off between rate and fraction of errors that can be corrected. Hence, in a sense this is like improving the error-correction performance to that possible in case of a weaker, stochastic noise model.